Sovereign Local Currency Debt and Original Sin Redux

Jihyun Kim
Bank of Korea

Original Sin Redux

Original sin: High dependence on FC external debt (Eichengreen, Hausmann, and Panizza, 2007)

- FC debt with currency mismatch problem ightarrow High external vulnerability
- Bad global financial conditions \rightarrow EMs' currency \downarrow \rightarrow debt burden \uparrow and default risk \uparrow

Since mid-2000, FC external debt share \Downarrow : 85% \rightarrow 50%

Original sin redux: High external vulnerability with LC external debt

(Hofmann, Shim, and Shin, 2020, Hofmann, Patel, and Wu, 2022)

- Foreign investors' unhedged FX exposures generate a negative feedback loop:

Global
$$\rightarrow$$
 Local Currency \rightarrow Foreign Inv. Asset Sales \rightarrow Bond Price \Downarrow Financial Shocks \rightarrow Depreciation \rightarrow (Capital Ouflows)

This Paper: Role of Domestic Financial Sector

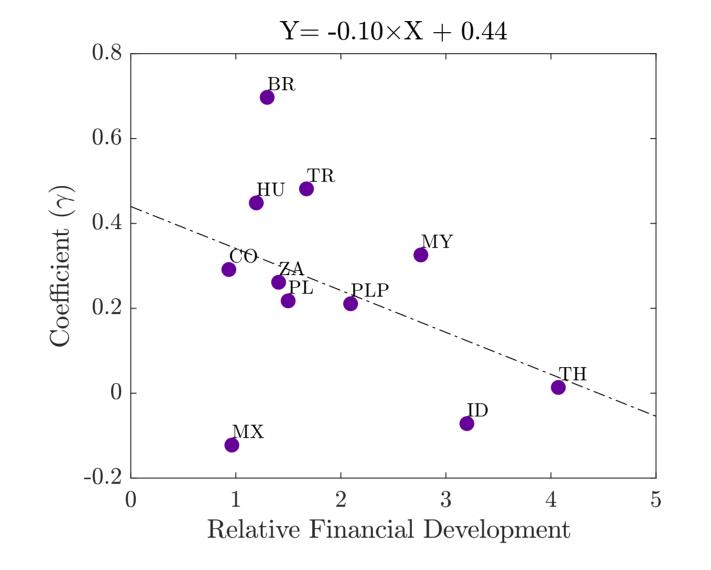
Low financial development relative debt level amplifies the negative feedback loop?

Global Financial shocks
$$\rightarrow$$
 LC Depreciation \rightarrow Foreign Inv. Asset Sales (Capital Ouflows) \rightarrow Bond Price \Downarrow (Default risk \Uparrow) Domestic Banks' Government Bond Holding \Uparrow \rightarrow Private Credit \Downarrow

Intensity depends on financial development and debt level

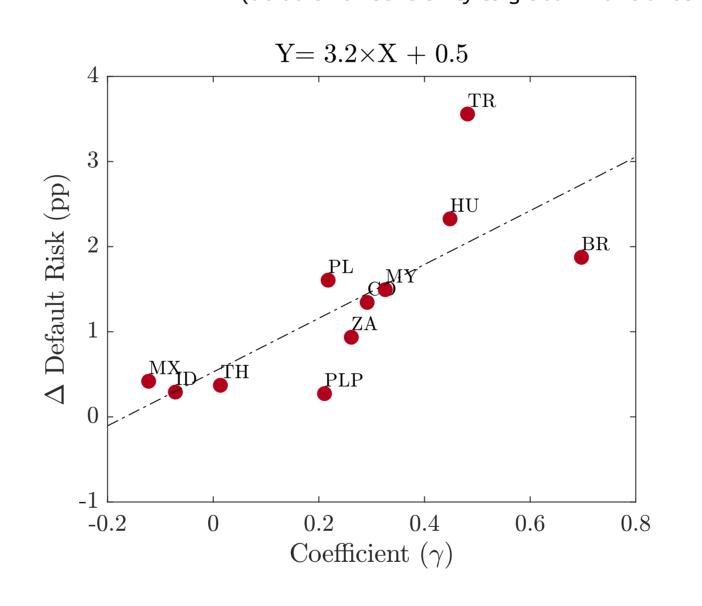
What I Do: Empirical

O. Decompose LC bond yield into default risk and currency risk for 11 EMEs (Du & Schreger, 2016)

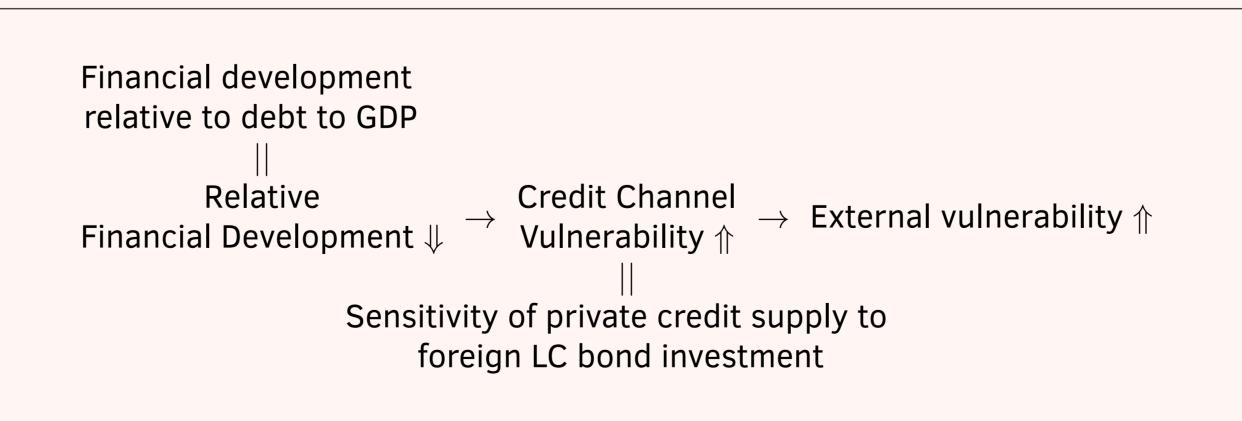

Default
$$\mathsf{Risk}_t = \underbrace{y_t^{LC}}_{\mathsf{LC}} - \underbrace{y_t^*}_{\mathsf{US}} - \underbrace{\rho_t}_{\mathsf{currency}}$$
 risl

- 1. Measure credit channel vulnerability for each country
- Credit channel vulnerability: Private credit sensitivity to foreign LC bond investment $\Delta \text{Private Credit}_t = \gamma \Delta \text{Foreign Holding}_t + \beta_l \mathbf{X}_{t-1} + \beta_q \mathbf{Global}_t + \epsilon_t$
- 2. Document relationship of γ with financial development relative to debt level
- 3. Document relationship of γ with external vulnerability

Financial Development Relative to Debt & Credit Channel Vulnerability


Lower financial development relative to debt level

→ Higher disruption of private credit when capital outflows from LC bond market



Credit Channel Vulnerability & External Vulnerability

Higher credit channel vulnerability \rightarrow Higher external vulnerability (default risk sensitivity to global financial conditions)

Relationship of External Vulnerability with Banks' Capability

A Three-period Sovereign Default Model with Domestic Banks

- Household: members randomly switch between workers and bankers
- Workers: save, consume, supply labor, pay labor income tax.
- Bankers: buy the government bond and rent capital to firms.
- Firms: produce consumption goods using labor and capital
- Foreign investors: buy the government local currency bond
- Government: finance expenditure using tax revenue and debt in local currency

Key Features of the Model

- Foreign holdings of government bonds are endogenous: $\frac{E_t(\tilde{r}_t)^2}{2\Gamma \mathrm{Var}_t(\tilde{r}_t)}$
- ↓ with default risk, expected currency depreciation, currency volatility
- Collateral constraints on domestic banks limit access to household savings: χN
- Government debt issuance may crowd out capital investment
- High risk in global financial states: currency depreciation and volatility ↑ (exogenous)

Foreign Investors' LC bond holdings

In period 0 and 1, a unit mass of foreign investors labeled by $i \in [0,1]$ solves

$$\max_{b_{i,t}^*} (E_t(\tilde{r}_t) - i) b_{i,t}^* - \frac{\Gamma}{2} \operatorname{Var}_t(\tilde{r}_t) b_{i,t}^{*2}$$

where, $b_{i,t}^*$: investor i's investment in government bond, \tilde{r}_t : log return

- Heterogeneous participation costs, i per dollar invested (Alvarez, Atkeson, and Kehoe, 2009)
- The investor i's bond holding then satisfies:

$$b_{i,t}^* = \frac{E_t(\tilde{r}_t) - i}{\Gamma \operatorname{Var}_t(\tilde{r}_t)}$$

- \hat{i}_t is the marginal foreign investors purchasing the bond: $\hat{i}_t = E_t(\tilde{r}_t)$.
- Foreign holdings of the government bonds b_t^* :

$$\underbrace{\int_{i=0}^{i=\hat{i}_t} b_{i,t}^* di}_{b^*} = \frac{1}{\Gamma \operatorname{Var}_t(\tilde{r}_t)} \int_{i=0}^{i=\hat{i}_t} \left(E_t(\tilde{r}_t) - i \right) di = \frac{E_t(\tilde{r}_t)^2}{2\Gamma \operatorname{Var}_t(\tilde{r}_t)}$$

Main Mechanism

$$\begin{array}{c} \text{High } \rightarrow \text{ Foreign } \\ \text{Risk } \rightarrow \text{ Investment } \Downarrow \rightarrow \begin{array}{c} \text{ Domestic Banks: } \\ \text{Goverment bond } \uparrow \end{array} \rightarrow \begin{array}{c} \text{ Domestic Banks: } \\ \text{ Private Credit } \Downarrow \rightarrow \end{array} \rightarrow \begin{array}{c} \text{ Defaul Risk } \\ \uparrow \end{array}$$

→ Model generates empirical patterns!